明辉站/技术开发/内容

一棵C#写的树(1) he_x(原作)

技术开发2023-07-24 阅读
[摘要]C#的确是一个很好的面向对象语言,我看《数据结构(第二版)》那本书应该出本用C#描述的版本。下面是我用C#写的一棵树。先用接口把节点做了抽象定义,这样在实现遍历,插入等操作的时候只对接口进行操作。在程序中,我尽量使用C#的特性,如接口,属性,玫举,这样代码虽然看起来比较冗长,但是,当代码越来越长的...
C#的确是一个很好的面向对象语言,我看《数据结构(第二版)》那本书应该出本用C#描述的版本。下面是我用C#写的一棵树。先用接口把节点做了抽象定义,这样在实现遍历,插入等操作的时候只对接口进行操作。在程序中,我尽量使用C#的特性,如接口,属性,玫举,这样代码虽然看起来比较冗长,但是,当代码越来越长的时候,你就会从中看到优点,因为合理的结构让你永远思路清晰。这课树我只能算写了一个开头,因为如果要把所有类型的树和加在他们之上的算法都写出来,我看没有1~2k 行程序是绝对不行的,不过,只要有时间,我一定会继续写的,同时希望大家也写,把这个代码库完善起来。
using System;
using System.Collections;
///
/// author 何潇(sailer)( he_x@263.net )
///
namespace Tree
{
/// <summary>
/// LEFT左子树,RIGHT右子树
/// </summary>
enum Position{LEFT,RIGHT};
/// <summary>
/// LINK指向孩子,THREAD指向后继
/// </summary>
enum Tag{LINK,THREAD};
/// <summary>
/// 二叉树节点的抽象定义
/// </summary>
interface IBinNode
{
bool isLeaf();
object Element{get;set;}
IBinNode Left{get;set;}
IBinNode Right{get;set;}
}

/// <summary>
/// 遍历,线索化等操作的接口
/// </summary>
interface ITravelBinTree
{
void PreOrderTravel();
void InOrderTravel();
void RevOrderTravel();
void Print(IBinNode t);
}
interface IInsertBinTree
{
void Insert(IBinNode node,Position pos);
}
/// <summary>
/// Normal actualize of bintree
/// </summary>
class BinNodePtr : IBinNode
{
protected object element;
protected IBinNode lchild;
protected IBinNode rchild;
public BinNodePtr(object e,IBinNode left,IBinNode right)
{
 element = e;
 lchild = left;
 rchild = right;
}
public BinNodePtr(object e)
{
 element = e;
 lchild = rchild = null;
}
public BinNodePtr()
{
 element = null;
 lchild = rchild =null;
}
public bool isLeaf()
{
 if(lchild==null && rchild==null)
return true;
 return false;
}
public object Element
{
 get{return element;}
 set{element = value;}
}
public IBinNode Left
{
 get
 {
return lchild;
 }
 set
 {
lchild = value;
 }
}
public IBinNode Right
{
 get
 {
return rchild;
 }
 set
 {
rchild = value;
 }
}
}
class BinNodeLine : BinNodePtr,IBinNode
{
private Tag ltag,rtag;
public BinNodeLine(object e,IBinNode left,IBinNode right) :base(e,left,right)
{ltag = rtag = Tag.LINK;}
public BinNodeLine(object e) : base(e)
{ltag = rtag = Tag.LINK;}
public Tag LTag
{
 get{return ltag;}
 set{ltag = value;}
}
public Tag RTag
{
 get{return rtag;}
 set{rtag = value;}
}
}
class TravelBinTree : ITravelBinTree,IInsertBinTree
{
const int INIT_TREE_SIZE=20;
private IBinNode tree;
private BinNodeLine head; //线索化后的头指针
private IBinNode prenode; //指向最近访问过的前驱节点
public TravelBinTree()
{
 tree = new BinNodePtr();
}
public TravelBinTree(IBinNode INode)
{
 tree = INode;
}
/// <summary>
/// 先序遍历树,用非递归算法实现
/// </summary>
/// <remarks>非递归实现</remarks>
public void PreOrderTravel()
{
 IBinNode temptree;
 Stack stk = new Stack(INIT_TREE_SIZE);
 if(tree == null)
throw(new InvalidOperationException("访问的树为空"));
 temptree = tree;
 stk.Push(tree);
 while(stk.Count!=0)
 {
while(temptree!=null)
{
 Print(temptree);
 stk.Push(temptree.Left);
 temptree = temptree.Left;
}
stk.Pop(); // 空指针退栈
if(stk.Count != 0)
{
 temptree=(IBinNode)stk.Pop();
 stk.Push(temptree.Right);
 temptree = temptree.Right;
}
 }
}
public void InOrderTravel()
{
 InOrderTravel(tree);
}
private void InOrderTravel(IBinNode t)
{
 if(t==null) return;
 InOrderTravel(t.Left);
 Print(t);
 InOrderTravel(t.Right);
}
public void RevOrderTravel()
{
 RevOrderTravel(tree);
}
private void RevOrderTravel(IBinNode t)
{
 if(t==null) return;
 RevOrderTravel(t.Left);
 RevOrderTravel(t.Right);
 Print(t);
}
public void Print(IBinNode t)
{
 Console.Write(t.Element + ",");
}
public void Insert(IBinNode node,Position pos)
{
 if(node == null)
throw(new InvalidOperationException("不能将空节点插入树"));
 switch(pos)
 {
case Position.LEFT : tree.Left = node;break;
case Position.RIGHT: tree.Right = node;break;
 }
}
/// <summary>
/// 按照先序遍历顺序遍历树
/// </summary>
public void TreeBuilder()
{
 Stack stk = new Stack(INIT_TREE_SIZE);
 stk.Push(tree);
 Position pos;
 string para;
 pos = Position.LEFT;
 IBinNode baby,temp;
 while(true)
 {
para = Console.ReadLine();
if(para == "")
{
 if(pos == Position.RIGHT)
 {
stk.Pop();
while(stk.Count!=0 && ((IBinNode)stk.Peek()).Right!=null)
 stk.Pop();
if(stk.Count ==0) break;
 }
 else
pos = Position.RIGHT;
}
else
{
 if(tree.GetType().Equals()==true)
baby = new BinNodePtr(para);
 temp = (IBinNode)stk.Peek();
 if(pos == Position.LEFT)
temp.Left = baby;
 else
temp.Right = baby;
 pos = Position.LEFT;
 stk.Push(baby);
}
 }

}
/// <summary>
/// 中序线索化
/// </summary>
public void InOrderThreading()
{
 head = new BinNodeLine("");
 head.RTag = Tag.THREAD;
 head.Right = head;
 if(tree == null) head.Left = head;
 else
 {
head.Left = tree; prenode = head;

 }
}
/// <summary>
/// 中序线索化的递归实现
/// </summary>
/// <param name="t"></param>
private void InThreading(IBinNode t)
{
 if(t==null)
return;
 else
 {
InThreading(t.Left);
 // if(left
 }
}
}
/// <summary>
/// Summary description for Class1.
/// </summary>
class Class1
{
/// <summary>
/// 测试控制台
/// </summary>
/// <param name="args"></param>
static void Main(string[] args)
{
 string para = null;
 para = Console.ReadLine();
 BinNodePtr root = new BinNodePtr(para);
 TravelBinTree t = new TravelBinTree(root);
 t.TreeBuilder();
 t.PreOrderTravel();
 Console.WriteLine("");
 t.InOrderTravel();
 Console.WriteLine("");
 t.RevOrderTravel();
}
}
}

非常希望和大家交流( he_x@263.net )

……

相关阅读